复赛模拟一

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	放养	狂奔	奶牛线路	检查列表
英文题目与子目录名	stocking	Stampede	Routing	Checklist
可执行文件名	stocking	Stampede	Routing	Checklis t
输入文件名	stocking.i n	Stampede .in	Routing .in	Checklis t.in
输出文件名	stocking.o ut	Stampede .out	Routing .out	Checklis t.out
每个测试点时限	1 秒	1 秒	1 秒	1 秒
测试点数目	10	11	12	10
每个测试点分值	10	9	8	10
附加样例文件	有	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	传 统

二. 提交源程序文件名

对于 C++语言	stocking. c	Stampede	Routing.cpp	Checklist.cpp
	pp	.cpp		

三. 运行内存限制

内存上限	128M	128M	128M	128M
LINTTIK	1 2 0 1 V 1	120111	120111	12011

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、特别提醒: 评测在 NOI Linux 下进行

1 放养

(stocking)

一个鲜为人知的事实是,奶牛拥有自己的文字: 「牛文」。 牛文由 26 个字母 a 到 z 组成,但是当奶牛说牛文时,可能与我们所熟悉 的 abcdefghijklmnopqrstuvwxyz 不同,她会按某种特定的顺序排列字母。 为了打发时间,奶牛 Bessie 在反复哼唱牛文字母歌,而 Farmer John 好奇她唱了多少遍。 给定一个小写字母组成的字符串,为 Farmer John 听到 Bessie 唱的字母,计算 Bessie 至少 唱了几遍完整的牛文字母歌,使得 Farmer John 能够听到给定的字符串。

Farmer John 并不始终注意 Bessie 所唱的内容, 所以他可能会漏听 Bessie 唱过的一些字母。 给定的字符串仅包含他记得他所听到的字母。

输入

输入文件名为 stocking.in。

输入的第一行包含 26 个小写字母,为 a 到 z 的牛文字母表顺序。

下一行包含一个小写字母组成的字符串,为 Farmer John 听到 Bessie 唱的字母。

输出

输出文件名为 stocking.out。

输出 Bessie 所唱的完整的牛文字母歌的最小次数。

字符串的长度不小于 1 且不大于 1000。

Bear and Big Brother.in	Bear and Big Brother.out
abcdefghijklmnopqrstuvwxyz	3
mood	

2 狂奔

(Stampede .Cpp)

农夫约翰的 N 头奶牛正在约翰农场前方的道路上狂奔,实际上它们是在赛跑,看看哪头牛跑的最快。

从上方看,每头奶牛可由一个单位长度的水平线段表示,每条线段用其左端点在 t=0 时的 坐标位置指定。

例如, (-3,6)将指定在 t=0 时,由 (-3,6)到 (-2,6)的线段表示的奶牛。

每头奶牛以一定的速率向右(+x方向)移动,该速率由其向右移动1个单位长度所花费的整数时间指定。

约翰对于这些产奶不积极,就知道撒欢乱跑的奶牛十分不满。

他打算在它们的比赛结束后, 严厉的训诫他们。

为了确定哪些奶牛参加了比赛,约翰将自己定位在 (0,0) 处,并沿着一条向 +y 方向延伸的射线观察。

随着比赛的进行,约翰会看到沿着这条射线可见的第一头奶牛,

也就是说,如果一头奶牛在穿过约翰视线的整个过程中,如果始终都有牛挡在它的前面被约翰看到,那么它就不会被约翰看见。

请计算约翰在正常比赛中,可看见的奶牛数量。

输入格式

输入文件名为 Stampede.in。

第一行包含整数 N。

接下来 N 行,每行包含三个整数 x,y,r,表示一头奶牛在 t=0 时刻,其对应线段的左端点位于 (x,y),它沿 +x 方向的移动速度是每 r 单位时间移动 1 单位距离。

输出格式

输出从 t=0 开始,整个比赛期间约翰可以看到的奶牛数量。

Stampede .in	Stampede .out
3	2
-2 1 3	
-3 2 3	
-5 100 1	

样例解释

FJ 可以看到牛 1 和 2 但看不到牛 3

【数据范围】

1≤N≤50000.

 $-1000 \le x \le -1$,

1≤y≤10⁶,数据保证不同奶牛的 y 互不相同。

1≤r≤10⁶

3 奶牛线路

(Routing.cpp)

厌倦了农场寒冷的冬季天气, 奶牛贝茜计划飞往一个温暖的目的地度假。

不幸的是,她发现只有一家航空公司,博维尼亚航空,愿意向奶牛出售机票,而且这些机票的结构有些复杂。

博维尼亚航空公司拥有 N 架飞机,每架飞机都在由两个或多个城市组成的特定"航线"上飞行。

例如,一架飞机可能从城市1起飞,然后飞到城市5,然后飞到城市2,最后飞到城市8。

没有一个城市会在一条航线上出现多次。

如果贝茜选择了一条航线,那么她可以在航线上的任何城市登机,然后在航线上的任何城市 下飞机。

她不需要在航线的第一个城市登机或在最后一个城市下机。

每条航线都有一定的费用,只要贝茜乘坐了某个航线,不论乘坐时途径的城市有多少,都需要支付全部的航线费用。

如果贝茜在旅途中多次搭乘某个航线(也就是说,如果她离开了该航线,后来又从另一个城市回来乘坐该航线),那么每次乘坐该航线时,她都必须为此付费。

贝西想找到从她所在的农场(在A市)到热带目的地(B市)的最便宜的旅行方式。

请帮助她确定她需要支付的最低费用是多少,以及为达到该最低费用所需的最少搭乘航班次数。

输入格式

第一行包含三个整数 A,B,N。

接下来 2N 行,每两行描述一条航线,第一行包含航线的乘坐费用以及航线途径的城市数量。第二行包含按航线顺序排列的城市列表。

输出格式

在一行输出贝茜从 A 到 B 所需要支付的最低费用以及所需的最少搭乘航班次数。

如果无法到达目的地,则输出 -1 -1。

Routing.in	Routing.out
3 4 3	22
3 5	
1 2 3 4 5	
2 3	
3 5 4	
1 2	
1 5	

数据范围

- 1≤N≤1000,
- 1≤ 航线费用 ≤109,
- 1≤ 航线途径城市数量 ≤100,
- 城市编号范围 [1,1000]。

4 检查列表

(Checklist.Cpp)

每天, 农夫约翰都会走过牧场, 检查每头奶牛的健康状况。

他的农场中有两种奶牛, 荷斯坦奶牛和根西岛奶牛。

其中,荷斯坦牛 H头,编号 1~ H。根西岛牛 G头,编号 1~ G。

每头奶牛都位于二维平面中的某个点上(不一定互不相同)。

约翰希望检查路线从荷斯坦牛 1 开始,到荷斯坦牛 H 结束,并且沿途能够检查完所有奶牛。 为了方便起见,他将对检查过的奶牛进行记录。

他希望按照编号的顺序来检查荷斯坦牛以及根西岛牛。

也就是说,所有奶牛检查完毕后,他得到的长度为 H+G 的奶牛检查顺序序列,应该满足所有荷斯坦牛构成的子序列(不一定连续)应为 1···H,所有根西岛牛构成的子序列(不一定连续)应为 1···G。

也就是说所有 H+G 头奶牛的顺序序列,应该是将编号顺序为 1···H 的荷斯坦牛序列与编号顺序为 1···G 的根西岛牛序列交错排列而成。

当约翰从一头奶牛处移动到另一头相距为 D 的奶牛处时, 他会消耗 D2 能量。

请你计算,约翰按上述说明,访问完所有奶牛所需消耗的能量最低是多少。

输入格式

第一行包含两个整数 H和 G。

接下来H行,每行包含两个整数x和y,表示一头荷斯坦牛所处位置的横纵坐标。

再接下来 G 行,每行包含两个整数 x 和 y,表示一头根西岛牛所处位置的横纵坐标。

输出格式

输出一个整数,表示约翰访问完所有奶牛所需消耗的最低能量。

数据范围:

1≤H,G≤1000,

0≤x,y≤1000

0

Checklist.in	Checklist.out
3 2	20
00	
10	
20	
03	
13	