6243: [2020CSP提高组完善程序1]:分数背包

内存限制:256 MB 时间限制:2 S
题面:传统 评测方式:文本比较 上传者:
提交:1 通过:1

题目描述

小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 a(0<a<l),并将一块价值是 w,体积为 vv 的蛋糕切割成两 块,其中一块的价值是 a×w,体积是 a×v,另一块的价值是((1a)×w,体积是 (1a)×v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4,4,2,体积分别是5,3,2。那么最优的方案就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.6,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5

输入的数据范围为:1n10001B10^51wi,vi100

提示:将所有的蛋糕按照性价比 wi/vi 可从大到小排序后进行贪心选择。

输入样例 复制

3 8
4 4 2
5 3 2

输出样例 复制

39/5